
Battery World – Mid-Term Forecast

Advance power sources Conference – Batteries & Fuel Cells – Tel-Aviv University - 24/12/2006

Samuel De-Leon shmueld3@bezeqint.net

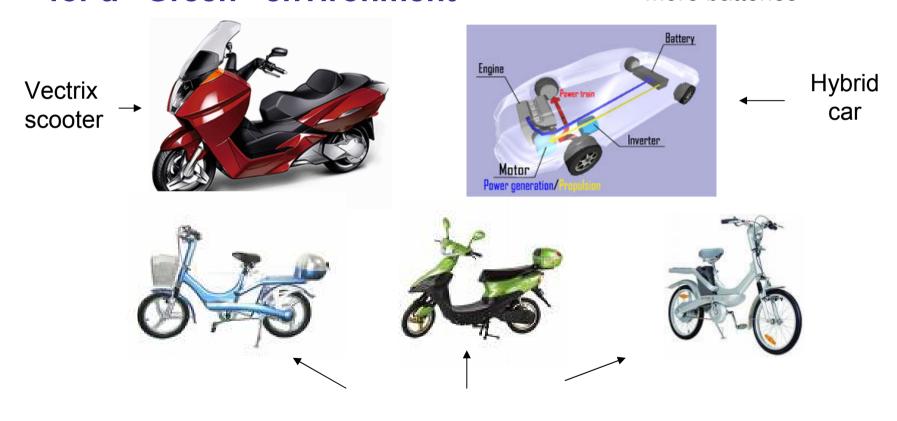
We start from here - Clay jar – with iron rod surrounded by copper cylinder and when filled with vinegar+an electrolytic solution produces 1.1 volts DC. AROUND: 250 BC to 640 ADO

TECHNOLOGICL TRENDS FOR THE NEXT DECADE

Energy Demand – The need for portable energy sources is the main drive for Electro-Chemical power sources energy density improvements.

- applications especially with large batteries/cells in place of other technologies. The Energy density gap to primary cells will decrease.
- New chemistries probably no new chemistry. We will see a new type of Li-ion rechargeable cells and small energy density improvements in primary cells.

TECHNOLOGICL TRENDS FOR THE NEXT DECADE


Portable Small Fuel Cells – will take the place of niche markets, mainly expensive applications, and military uses with portable commercial uses like Laptops if there is going to be a cost reduction.

Hybrid Systems – more and more Hybrid - integrate the good performance of different applications like battery + capacitor, battery + fuel cell, primary cell + rechargeable cell etc.

Energy demands in the next decade

Increasing demands for Hybrid Cars, Electric scooters,
 Electric Bikes because of gasoline high cost and needs
 for a "Green" environment

More batteries

Electric Bike

Energy demands in the next decade

Increasing demands for portable communications –
more Laptops, PDA'S, Cellular phones, Video cameras,
Power tools and integrated applications like PDA with
integrated Cellular phone.

More batteries

ver 1 - 26/12/2006

Lithium-Ion Technology

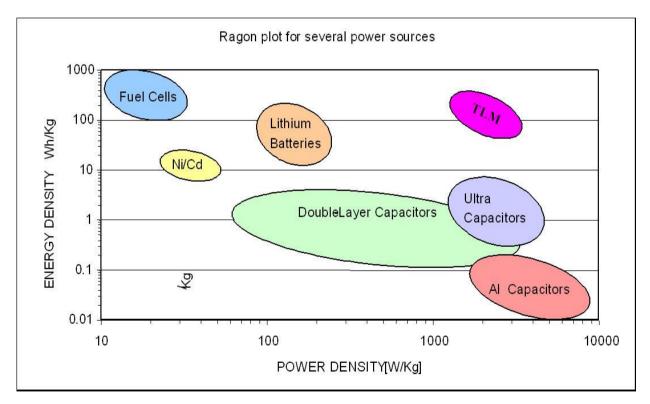
- Proved technology.
- Wide spread in different sizes, stainless steel, Aluminum packaging and different internal constructions.
- Main development in Western world, Japan and Korea.
- Main production in China.
- Increase in energy density because of new materials developments.

Li-Ion Materials Improvements

- New materials for cathodes like Nanostructure metallic alloy will increase energy density up to 30% with a intent not to decrease the cycle life.
- Sony new technology "NEXLION" for video cameras -15% more energy density with fast charge buy cycle life decrease from 600 to 300 cycles.

General expectation for 15-20% energy improvements

The current gap Li-lon VS Primary



LITHIUM SULFURYL CHLORIDE	LITHIUM ION
ELECTROCHEM 3B30 C - SIZE	PANASONIC NCR18650 – LONG A SIZE
7 AH	2.9 AH
444 WH/KG	230 WH/KG
927 WH/L	605 WH/L

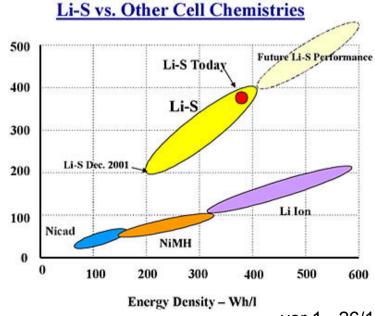
Tadiran new primary Li-Ion cells

 New technology with best power density for a primary system, higher voltage and no passivation.

The target - to increase performance without decreasing safety

 Sony Li-Ion safety problems lead to a huge economic damage to the company – as has been learned by the world battery industry – Safety! Safety!

 According to Sony, at the packing phase during the manufacturing process, particles of Cu, Al, Fe and Ni get mixed in and generated the possibility of an internal short circuit.


Lithium Ion Polymer as a replacement of Li-Ion

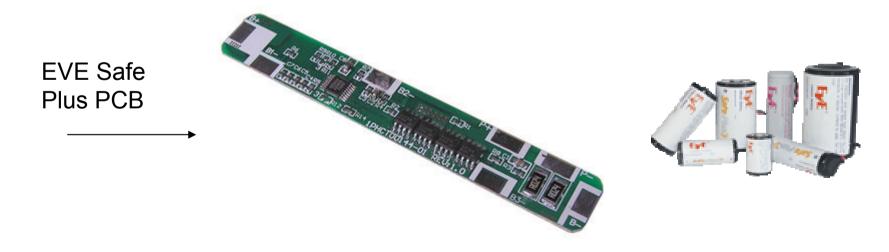
- Li-lon energy density improvements lead to more safety risks, short circuits and fires.
- Lithium polymer batteries use lithium as an active ingredient with no liquids. Lithium Ion Polymer is considered safer than Li-Ion as the polymer is not flammable in comparison to organic electrolyte in Li-Ion.
- many technology improvements has taken place in last years.
- As a result of Sony Li-lon safety problem Sony
 President has declared that within 2 years Sony plans to replace Li-lon by Lithium Polymer for Laptops.

SION – LITHIUM-S RECHARGABLE

- New promised technology development from SION-Rechargeable li-sulfur with weight energy density higher then Li-ION.
- 2.1-2.2V Working voltage.
- Current Cells with energy densities of 315WH/KG and 210WH/L in comparison to 230 WH/KG and 600 WH/L in Li-lon.

Primary Cell Improvements

more lithium prismatic cells in order to gain volume energy density improvements.



- Decrease in self discharge.
- Increasing operating temperature range.
- Decrease in passivation.

Expectation for up to 5% energy improvements

Primary cell safety improvements

- Shut down separator
- Internal vent
- Internal fuse
- Cell level protection circuit board

Consumer market

Trends in primary cells for consumer markets

- Increased demands for Alkaline cells drive capacity improvements.
- More Alkaline prismatic cells.
- Alkaline market increase could be even higher but consumer Ni-Mh rechargeable cells catch some market share.

500 cells of Dry cells→ **WASTE**

1 cell of Ni-MH→ Reuse by recharge

Trends in primary cells for consumer markets

- New Chinese manufacturers for Lithium Iron spiral cells – Energizer is not the only one.
- Lithium iron market will expand with competition.

Energizer energy to go with Lithium Iron Cells

L91

CHINA SHANDONG HIHON

Trends in primary cells for consumer markets

 Li-Mno2 CR123 and CR2 replacements with Li-ION rechargeable cells with control board under the sleeve.

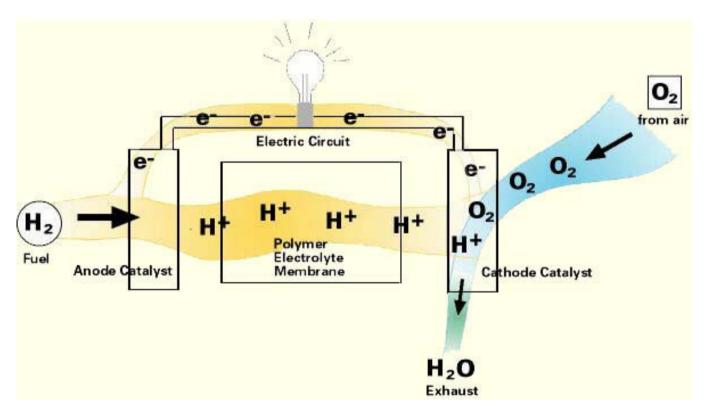
 More rechargeable Li-lon power packs for charging Li-lon batteries.

Military market

Trends in Military Batteries Market

 Li-ion batteries and Zinc-Air batteries will replace part of the lithium primary batteries market share.

 Li-Mno2and Li-Soci2 will replace part of the Li-So2 market share due to better energy density and cost reduction + competition. There are many Li-Mno2 manufacturers (more than 50) and Li-Soci2 manufacturers (more than 27) but only 3 Li-So2 manufacturers (US, Canada, China))


Military market

Trends in Military Batteries Market

- Li-CFX seem do be a possible candidate for a new chemistry battery for military batteries.
- 3 manufacturers, Eagle-Picher Energy, Quallion, Spectrum Brands (formerly Ray-O-Vac) have developed a D-size Li-CFX Cells with around 15ah capacity for military batteries.

Fuel Cells

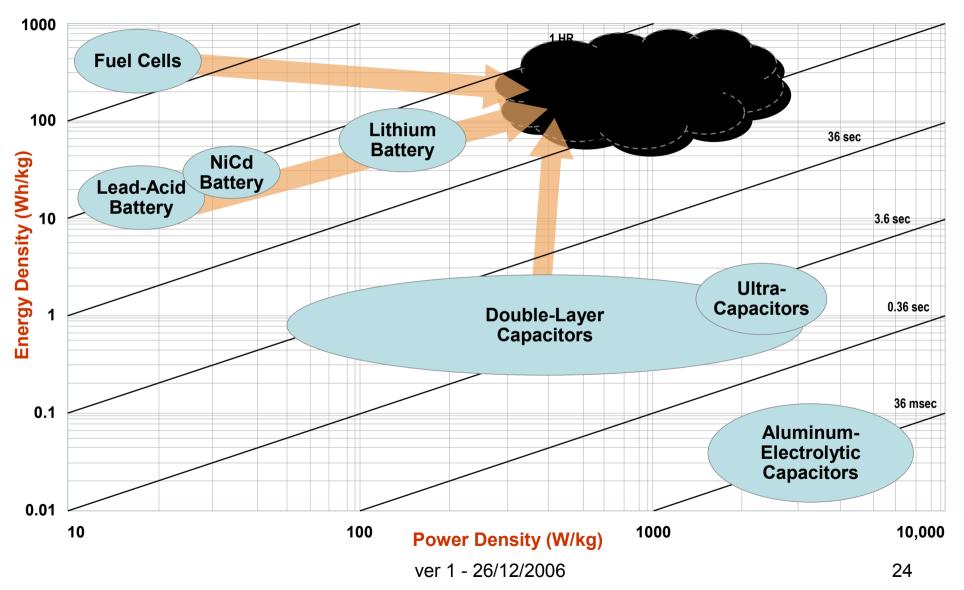
 Fuel cells produce energy from chemical materials and not a storage device like batteries.

Portable Fuel Cells

- The technological and economical challenges are about to penetrate the market with a is cost reduction in Li-lon cells and performance, cost, reliability competition.
- Potential energy densities up to 5 times higher than batteries.
- Intensive development world wide-spread.
- Intended for payable markets!!!.
- Are more expensive than batteries.
- Use batteries for start-up or power peaks.

Fuel cells and batteries are complementary products.

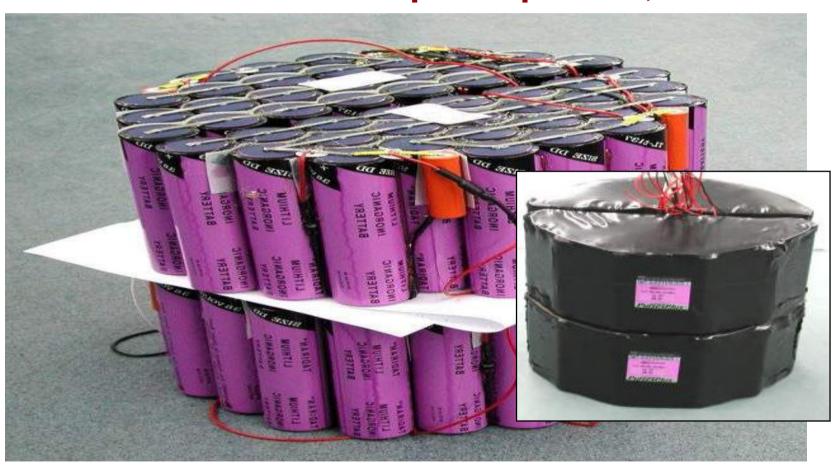
Portable fuel cells – reaching commercial phase


First commercial fuel cells in the market are power packs for charging Li-Ion batteries

- Single use Fuel cell Power Pack from Medis Israeli company.
- Cartridge replaceable Fuel cell Power Pack from Ultracell USA company.

Hybrid Systems -Why Hybrids?

Hybrid Systems


Different technologies integrate basic idea

- Primary Lithium cells in parallel to capacitors capacity, no passivation, pulses.
- Rechargeable Lithium cells in parallel to capacitors power and pulses.
- Primary Lithium cells in parallel to rechargeable Li-lon capacity and power pulses, no passivation.
- Rechargeable Lithium cells in parallel to Fuel Cells capacity and power pulses, no passivation.
- Capacitors in parallel to Fuel Cells energy and pulses

Tadiran Oceanographic Hybrid Battery: 14KWh, 960Ah, 14.4 Volt, 19.5 Kg 96 DD Lithium Thionyl Chloride Cells +12 HLC1550 Super capacitor,

THANK YOU

Samuel De-Leon shmueld3@bezeqint.net